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A B S T R A C T

Background: Neuroscientists routinely seek to identify and remove noisy or artifactual observations from their
data. They do so with the belief that removing such data improves power to detect relations between neural
activity and behavior, which are often subtle and can be overwhelmed by noise. Whereas standard methods can
exclude certain well-defined noise sources (e.g., 50/60 Hz electrical noise), in many situations there is not a clear
difference between noise and signals so it is not obvious how to separate the two. Here we ask whether methods
routinely used to “clean” human electrophysiological recordings lead to greater power to detect brain–behavior
relations.
New method: This, to the authors’ knowledge, is the first large-scale simultaneous evaluation of multiple com-
monly used methods for removing noise from intracranial EEG recordings.
Results: We find that several commonly used data cleaning methods (automated methods based on statistical
signal properties and manual methods based on expert review) do not increase the power to detect univariate
and multivariate electrophysiological biomarkers of successful episodic memory encoding, a well-characterized
broadband pattern of neural activity observed across the brain.
Comparison with existing methods: Researchers may be more likely to increase statistical power to detect phy-
siological phenomena of interest by allocating resources away from cleaning noisy data and toward collecting
more within-patient observations.
Conclusions: These findings highlight the challenge of partitioning signal and noise in the analysis of brain-
behavior relations, and suggest increasing sample size and numbers of observations, rather than data cleaning, as
the best approach to improving statistical power.

1. Introduction

All measures of neural activity comprise mixtures of sources, some
reflecting the physiological processes we seek to understand and others
reflecting physiological or non-physiological sources that contaminate
our signals of interest. In human neurophysiological recordings, nui-
sance signals may reflect electrical potentials produced outside of the
brain (e.g., those produced by muscle or eye movements), electrical
signals caused by sources within the brain other than those we seek to
observe (e.g., epileptic activity contaminating signals related to normal
cognition), or even sources outside of the body entirely, such as 50/
60 Hz line noise or crosstalk between electrical channels within the
recording system. To reduce the influence of these nuisance signals, and
thereby increase the statistical power to detect brain–behavior corre-
lations, researchers employ a variety of data cleaning methods.
Although the use of data cleaning methods is nearly ubiquitous in
neuroscientific research, it remains unknown whether these methods
actually increase the power to detect relations between physiology and

behavior. The goal of this report is to systematically investigate the
effectiveness of commonly used data cleaning approaches.

As an example case, we surveyed the literature on intracranial
electroencephalography (iEEG) studies of human episodic memory
encoding, a fairly restrictive domain. Electrophysiological studies of
memory encoding have consistently demonstrated that increases in
broadband high-frequency activity, a correlate of multi-unit neural
activity (Rutishauser et al., 2010; Manning et al., 2009; Winawer et al.,
2013), during encoding predicts subsequent recall, an effect seen across
a broad network of brain regions including hippocampus, medial tem-
poral lobe (MTL), and lateral prefrontal cortex (Burke et al., 2014; Long
et al., 2014; Long and Kahana, 2015; Sederberg et al., 2006). We used
this high-frequency signal in our univariate analyses described below
because increased high-frequency activity is also linked to successful
cognitive performance across a range of domains (Crone et al., 2006;
Cheyne et al., 2008; Miller et al., 2007b; Hermes et al., 2015; Chang
et al., 2011). These broadly distributed high-frequency patterns have
also been combined with low-frequency signals into novel multivariate
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models for guiding closed-loop systems to detect memory encoding
states (Ezzyat et al., 2018; Ezzyat and Rizzuto, 2018). We therefore
applied our analyses to both a univariate and multivariate measure of
memory encoding, in order to determine whether data cleaning would
differentially impact the two approaches.

In our survey of the iEEG episodic memory literature, we identified
six commonly used procedures aimed at removing or attenuating pu-
tative noise sources prior to hypothesis testing (see Table 1). These six
methods fell broadly into three categories: (1) methods based on sta-
tistical properties of the voltage timeseries (variance and kurtosis); (2)
manual annotation of data based on suspected epileptic activity over
channels or epochs; and (3) common average vs. bipolar referencing.
Our goal was to evaluate the effectiveness of each approach in in-
creasing the power to detect electrophysiological correlates of memory
encoding. We applied each of these methods separately at both the
channel and epoch levels, and for the automated techniques we com-
pared the effect of removing putatively noisy data with quantity-mat-
ched random data removal. We applied the methods to a dataset of 127
patient participants (although not all patients had manual annotations
from expert review), each contributing hundreds of observations during
a memory encoding task. Taking advantage of the large quantity of
within-subject data, we further evaluated each data cleaning method as
a function of the quantity of data collected (# of channels and # of
events) to determine whether the data quantity interacted with a par-
ticular method's effectiveness in increasing statistical power.

Because there is no widely adopted standard for cleaning noise from
iEEG data, investigators are left to apply methods which they have used
in the past or those used by others in the field without knowing which
methods are likely to be effective. For methods based on statistical
properties of the timeseries, which can be scripted and applied auto-
matically, it is particularly easy for researchers to (consciously or not)
evaluate multiple thresholds and methods and select the one that leads
to the “cleanest” end result (Simmons et al., 2011; Silberzahn et al.,

2018). In the case of more labor intensive methods like identifying
epileptic artifacts that require human annotation, subjectivity in cri-
terion setting means that the rejected data will vary from one expert
annotator to the next. Manual methods also have the obvious downside
of requiring more time to carry out; to the extent that manual methods
are effective at identifying and removing noise, this may be worth the
investment of time and effort. However if manual annotation does not,
on average, have any benefit then it simply squanders resources that
could be better allocated elsewhere.

Across univariate and multivariate measures we find that the ma-
jority of commonly used approaches to identifying and removing noisy
epochs or channels do not increase statistical power. For methods based
on using a numeric threshold on statistical measures of the voltage
timeseries (e.g. signal variance or kurtosis), typically-used liberal cri-
teria (z > 2.5) do not increase statistical power compared to randomly
removing an equivalent number of epochs or channels, while, as ex-
pected, using more conservative thresholds that exclude more data lead
to reductions in statistical power. For methods based on using human
manual annotation to identify epileptic channels or epochs, the overall
effect is similar in that removing noisy data does not increase statistical
power. We investigated whether the statistical or manual approaches
might be more effective when applied to smaller datasets, however a
within-subject parametric analysis indicated this was not the case. The
major exception to this pattern of null results occurred when comparing
bipolar and common average referencing approaches, where bipolar
referencing significantly outperformed common average referencing in
several analyses, particularly for the multivariate paradigm. The data
show that the choice of referencing has a profound impact on iEEG
analysis broadband measures of neural activity, while other commonly
used noise removal approaches do not, and suggest that researchers will
benefit from allocating resources away from post-processing noise and
toward collecting more within-subject data.

2. Materials and methods

2.1. Participants

We analyzed data from 127 neurosurgical patients with medication-
resistant epilepsy who participated in at least three sessions of a verbal
free recall memory task (described below) as part of an ongoing re-
search collaboration coordinated by the University of Pennsylvania. As
part of their clinical workup, subjects had electrodes implanted in-
tracranially, either on the cortical surface or within the brain par-
enchyma – recordings from these electrodes during performance of the
memory task were then used in the analyses described in this report.
Subjects performed the memory task using a laptop at the bedside, and
were tested at one of the following centers: Thomas Jefferson University
Hospital (Philadelphia, PA), University of Texas Southwestern Medical
Center (Dallas, TX), Emory University Hospital (Atlanta, GA),
Dartmouth-Hitchcock Medical Center (Lebanon, NH), Hospital of the
University of Pennsylvania (Philadelphia, PA), Mayo Clinic (Rochester,
MN), and Columbia University Medical Center (New York, NY). The
Institutional Review Board at each center approved the research pro-
tocol, and informed consent was obtained from each participant.

2.2. Free recall task

In a free recall task, a subject is presented with a list of words that
he or she later tries to recall in any order (Glanzer, 1969). During the
encoding phase, 12 nouns (http://memory.psych.upenn.edu/
WordPools) were presented one at a time on a computer screen in the
subject's primary language (either English or Spanish). Each word re-
mained on screen for 1600 milliseconds, followed by a blank inter-sti-
mulus interval of between 750 and 1000ms (randomly drawn from a
uniform distribution). Following the final word in the list, there was a
20 s distractor period, during which the subject used the laptop

Table 1
Preprocessing approaches used in prior iEEG studies of human episodic
memory.

Methods

Bipolar Kurtosis Standard
deviation

Epileptic
activity

Raghavachari et al.
(2001)

X

Caplan et al. (2001) X
Sederberg et al., 2003 X
Ekstrom et al. (2005) X
Greco et al. (2007) X
Sederberg et al. (2007) X
van Vugt et al. (2009) X
van Vugt et al. (2010) X
Nolan et al. (2010) X
Whitmer et al. (2010)
Dastjerdi et al. (2011) X
Burke et al. (2013) X
Swann et al. (2012) X
Burke et al. (2014) X
Lega et al. (2015) X
Rangarajan et al. (2014) X X
Zavala et al. (2014) X
Greenberg et al. (2015) X X
Zhang and Jacobs

(2015)
X

Haque et al. (2015) X
Kim et al. (2016) X
Vass et al. (2016) X
Piai et al. (2016) X
Fonken et al. (2016) X X
García-Cordero et al.

(2017)
X

Sheehan et al. (2018) X X X
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keyboard to answer arithmetic problems of the form A+ B+ C=?,
where A, B, and C were random integers between 0 and 9. After the
delay ended, an 800 Hz auditory tone was played and a row of asterisks
was displayed on the screen (simultaneously for 300ms), which sig-
naled the beginning of the recall period (30 s). Subjects were instructed
to recall as many words from the preceding list as could be re-
membered, in any order. Fig. 1 illustrates the design of the task. Sub-
jects completed up to 25 lists in a single session. Audio responses from
the sessions were digitally recorded and manually parsed and annotated
offline using Penn TotalRecall (http://memory.psych.upenn.edu/
TotalRecall). There were two versions of the task: in one version the
lists of words were constructed to minimize semantic relationships
between the words; in the other version, four words from each of three
semantic categories (e.g. DESK, CHAIR, TABLE, SOFA) were presented
within the same list. Subjects could participate in one or both tasks
across different sessions, however within a given session, only one task
was used.

2.3. Electrophysiological recordings

iEEG data were gathered from both depth and subdural cortical
surface electrodes. Subdural cortical surface leads were arranged in
both strip and grid configurations. The types of electrodes used for
recording varied across institutions based on clinician preference.
Across the sites, the following electrode models were employed: PMT
Depthalon (0.8 mm), AdTech Spencer RD (0.86mm), AdTech Spencer
SD (1.12 mm), AdTech Behnke-Fried (1.28mm), and AdTech subdural
strips and grids (2.3 mm).

iEEG data were recorded with one of the following clinical EEG
interfaces, depending on institutional preference: Nihon Kohden EEG-
1200, Natus XLTek EMU 128 or Grass Aura-LTM64. Electrode locations
varied across subjects and were determined strictly by clinical mon-
itoring needs. Depending on the amplifier and the preference of the
clinical team, the signals were sampled at either 500, 1000, or 1600 Hz
and were referenced to a common contact placed intracranially, on the
scalp, or on the mastoid process. We notch filtered (Butterworth, 4th
order, frequency range= center ± 2Hz) all timeseries at 60, 120, and
180 Hz to reduce line noise.

2.4. Bipolar vs. common average referencing

Bipolar referencing involves referencing pairs of neighboring elec-
trodes against each other, as opposed to common average referencing,
which references against the average signal across electrodes (Nunez
and Srinivasan, 2006). Bipolar referencing is thought to minimize the
impact of reference channel noise on other channels (Burke et al.,
2013), however a large-scale direct comparison of bipolar and common
average reference schemes using a combination of subdural and depth
electrodes has not been reported. We therefore compared bipolar and
common average referencing to answer the question of whether there
was any benefit, in terms of increasing statistical power by attenuating

noise, to using bipolar referencing over common average referencing.
Bipolar pairs were created for every group of two adjacent contacts on
every depth, strip, and grid in a patient's montage. The timeseries for
each bipolar pair is the difference between the signals in each electrode.
We use the term channel in this paper to denote either a common
average referenced signal from a single electrode, or a bipolar refer-
enced signal from two neighboring electrodes, depending on the mod-
ality of the data of interest.

2.5. General procedure

The goal of this study was to use a large dataset to evaluate the
effects of several methods for identifying and removing noise in iEEG
recordings. We measured the effect of each method by determining the
impact on the subsequent memory effect (SME), a well-characterized
biomarker of successful memory encoding, during a free recall memory
task. As described below, we separately assessed the effect on a uni-
variate and multivariate measure of the SME, in order to answer the
question of whether data removal had a differential impact on statis-
tical power for uni- and multivariate measures. For both the univariate
and multivariate analyses of the SME, we used spectral decomposition
of the iEEG recordings to identify power in specific frequency bands; we
describe the details in the next section. A schematic detailing our pro-
cedures for statistical thresholding and computing classifier metrics can
be found in Fig. S1.

2.6. Spectral decomposition

We extracted all word encoding intervals from each subject's re-
cordings (1600ms following each word onset) and used Morelet wa-
velet convolution (wave number= 5) to spectrally decompose each
epoch. We included a 1500ms buffer period before and after each word
encoding epoch before convolution to mitigate edge artifacts, and
subsequently discarded the buffer period before further analysis.

For the multivariate analysis, we used eight wavelets with center
frequencies logarithmically-spaced between 3 and 175 Hz (3.0, 5.4, 9.6,
17.1, 30.6, 54.8, 97.9, 175.0). For the univariate analysis, we also used
eight wavelets, but focused on the high frequency range (between 70
and 200 Hz; 70.0, 81.3, 94.5, 109.8, 127.5, 148.2, 172.1, 200.0). We
then log-transformed and averaged the resulting powers over the
1600ms word encoding interval. We then normalized the powers (z-
transform) across word encoding epochs, separately within each ses-
sion, channel and frequency (where relevant, the z-transformation was
applied after applying one of the evaluated noise attenuation methods).

2.7. Multivariate classification

The goal of the multivariate analysis was to use patterns of spectral
power (across frequencies and channels) during encoding to classify
individual word encoding epochs as recalled/not recalled. We used a
logistic regression classifier implemented with Python's scikit-learn

Fig. 1. Schematic diagram of a single list presentation during the free recall task.
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(Pedregosa et al., 2011) library, and using a balanced class weight to
account for the difference in the base rate of recalled/not recalled trials.
To reduce overfitting, we used L2 penalization (Hastie et al., 2001) with
penalty parameter C=2.4×10−4, following protocols from previous
free recall studies with a similar subject cohort (Ezzyat et al., 2017). We
trained the classifier on feature matrices comprised of the z-scored
powers (the input) and recall outcomes (binary -“recalled” or “not re-
called”; the output). We used N− 1 cross-validation at the list-level as
follows: we trained the model using all epochs with the exception of
those corresponding to a single held-out list (12 epochs); we then tested
the trained model on the held-out list to generate predicted prob-
abilities of recall for each held-out epoch. We then iterated this pro-
cedure until all lists had been held-out once. We created receiver op-
erating characteristic (ROC) curves for each subject using the cross-
validated classifier probabilities and the true recalled/not recalled la-
bels. An ROC curve plots the true positive rate against the false positive
rate at various probability thresholds. We assessed model performance
using area under the ROC curve (AUC), with an AUC of 0.5 representing
chance (Hanley and McNeil, 1982).

2.8. Univariate measure of SME

The goal of the univariate analyses was to compare spectral power
in the high-frequency range (70–200 Hz) during the encoding period of
recalled vs. not recalled words. Univariate high-frequency power
during memory encoding across the brain is well-known to differentiate
subsequently recalled and not recalled words (Burke et al., 2014). We
averaged the z-scored powers over the word encoding period
(0–1600ms) separately for each epoch× frequency bin× channel, and
used Welch's t-test across epochs within each channel to compare power
for subsequently recalled vs. not recalled epochs (we employed Welch's
test due to the possibility for different Ns and variances for the recalled/
not recalled distributions). We then averaged the t-statistic across all
channels to derive a summary measure of the univariate subsequent
memory analysis.

2.9. Channel and epoch-based statistical thresholding

We evaluated the use of standard deviation and kurtosis thresholds
for excluding channels from analysis. After collecting the timeseries
data and separating them into epochs, we calculated the standard de-
viation and kurtosis of each epoch on each channel. Within each
channel, we then computed the average standard deviation and average
kurtosis across epochs. Then, we z-scored these metrics separately
across channels, and we evaluated the effect of excluding channels on
the basis of standard deviation/kurtosis values at various thresholds in
the distribution across channels for a given subject.

We excluded a channel if its kurtosis or standard deviation z-score
exceeded a given threshold. We evaluated the effect of thresholds at
intervals of 0.5 between and including 0 and 3. As a benchmark for
comparison, we also compared the threshold-based approach to ran-
domly removing an equivalent number of channels at each threshold.
We repeated the random removal 50 times, and the reported AUC/t-
statistic for random removal represents the average across iterations.

Similar to the analysis described in the previous paragraphs, we also
tested the effect of excluding individual epochs based on their kurtosis
and standard deviation. Within each epoch, we averaged the metric of
interest (standard deviation, kurtosis) across channels. We proceeded to
z-score these averages across epochs. We randomly removed epochs
similarly to the channel randomization in the previous section. This
process is also repeated 50 times, with the reported random AUC / t-
statistic being the average of the 50 iterations. The multi- and uni-
variate results can be found in Figs. 2 and 3 , respectively. While the
previous sections described automated statistical thresholding, the next
two sections detail removing data based on manual/semi-manual
physician identification.

2.10. Manual channel exclusion

At each participating medical center, clinicians identified electrodes
in regions associated with three types of abnormal neural activities:
interictal spiking, seizure onsets, and lesions. Electrode indications
were stored in a subject-specific text file, although one did not exist for
every subject in this experimental cohort. For the 94 subjects who had
these annotations, the information was parsed to identify common
average referenced channels associated with the abnormal categories.
Any bipolar referenced channel that included at least one such elec-
trode was also grouped as belonging to the abnormal category asso-
ciated with the channel(s). All possible combinations of categories were
removed before performing spectral decomposition and classification.
The resulting AUCs/t-statistics may be found in Fig. 4.

2.11. Manual epoch exclusion

Recently, a semi-automatic method has been evaluated to identify
epochs with high frequency oscillatory (HFO) activity, a characteristic
of epileptic EEG and iEEG (Waldman et al., 2018; Shimamoto et al.,
2018; Weiss et al., 2018). The algorithm, run only on depth electrodes
for optimal signal-to-noise, annotates an epoch with one of the fol-
lowing labels that are then visually validated: (0) No HFO event de-
tected, (1) Ripple superimposed in an interictal discharge, (2) Sharply
contoured epileptiform spike, (3) Ripple on oscillation, (4) Fast ripple
superimposed in an interictal discharge, (5) Fast ripple on oscillation.
Following the guidance of the developers of the method, we removed as
artifacts any epoch with an annotation of 1, 2, and/or 4. Then spectral
decomposition and t-stat and AUC calculations proceeded similarly to
other analyses, with the exception that only depth electrodes were used
to build the classifiers. Of the original subject cohort, 28 patients had
been analyzed with this technique and had HFO epochs to remove.
Results for this analysis may be found in Fig. 5.

2.12. Data subsampling

In addition to evaluating the effect of applying the preceding
methods to a subject's full dataset, we were also interested in how noise
removal methods might differ in their effects on large and small within-
subject datasets. To address this question, for all previously described
methods, we repeated the analyses using variously sized subsets of data
within subject. We randomly sampled 20%, 40%, 60%, or 80% of either
(1) each subject's full set of channels or (2) each subject's full set of
epoch lists. This process was iterated 50 times per session and sampling
percentage, and the reported result for the subject is the average across
iterations and sessions. For methods that involved statistical thresh-
olding, z-score thresholds below 2 were not tested since post hoc ana-
lysis of the full datasets showed they did not improve classifier per-
formance. Subsampling results may be found in the Supplementary
Materials.

2.13. Statistics

All results are presented as the mean ± standard error of the mean
(SEM) unless noted otherwise. Any horizontal dashed lines in results
figures represent baseline metrics present when no data are removed.
The shaded region around them represents the SEM surrounding the
baselines. All statistical tests, with the exception of those in Fig. 5, were
multiple comparisons corrected using false discovery rate (Benjamini
and Hochberg, 1995). For the analysis in Fig. 5, because there were
many fewer tests, we used Bonferroni correction.

2.14. Data availability

Electrophysiological data may be found at http://memory.psych.
upenn.edu/Electrophysiological_Data. The Python Time Series Analysis
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(PTSA) toolbox (https://github.com/pennmem/ptsa_new) was used to
analyze the data. Custom Python scripts are available upon request
from Steven Meisler (smeisler@g.harvard.edu).

3. Results

Figs. 2–5 show the impact of the cleaning methods on classification
outcomes.

3.1. Channel and epoch-based statistical thresholding

As shown in Fig. 2, removing data based on their variance or kur-
tosis did not increase multivariate classifier performance above base-
line. As denoted by asterisks in the figure, the random removal (dotted
lines) occasionally performed significantly better than the true exclu-
sion (Wilcoxon signed-rank test; FDR-corrected q < 0.05). At every
threshold, the AUCs for bipolar pairs were significantly greater than
their common average counterparts (Wilcoxon signed-rank test;
p < 1×10−10). Similarly, in the univariate measure, depicted in
Fig. 3, removing data at any threshold never led to a significant increase
in t above the No exclusion condition.

We also assessed the performance of noise removal methods for
multivariate and univariate measures, as a function of the amount of
within-subject data available. We subsampled each participant's dataset
by either channels or epochs and performed the multivariate and uni-
variate analyses for the subsampled data. As was the case for the full
dataset, automated noise removal methods did not increase the size of
the subsequent memory effect in smaller datasets (Figs. S6 and S7).

3.2. Manual channel exclusion

N=94 subjects had manually identified channels to exclude.
Removing channels associated with abnormal neural activity did not
significantly improve classifier performance. As depicted in Fig. 4,
AUCs after removal never exceed the No exclusion baseline. Similar to
the previous results, the bipolar AUCs significantly exceed those of
common average data (Wilcoxon signed-rank test; p < 1×10−10).

3.3. Manual epoch exclusion

N=28 subjects had annotated HFO epochs to exclude. As depicted
in Fig. 5, the average t-statistic for the data after HFO-exclusion was

Fig. 2. Statistical thresholding applied to the full multivariate dataset. The columns are differentiated by the type of data excluded (channels vs. epochs), and the
rows are differentiated by the basis of exclusion (standard deviation vs. kurtosis). Referencing scheme (common average vs. bipolar) is indicated by color in all figure
panels. The black dashed lines represent the respective values for the No exclusion baseline. * Indicates FDR-corrected q < 0.05 compared to No exclusion baseline. †
Denotes FDR-corrected q < 0.05 compared to Random exclusion.The shaded region surrounding those lines represent the SEM. Lines are horizontally offset for visual
clarity. Error bars represent SEM.
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Fig. 3. Statistical thresholding applied to the full univariate dataset. The columns are differentiated by the type of data excluded (channels vs. epochs), and the rows
are differentiated by the basis of exclusion (standard deviation vs. kurtosis). Referencing scheme (common average vs. bipolar) is indicated by color in all figure
panels. The black dashed lines represent the respective values for the No exclusion baseline. * Indicates FDR-corrected q < 0.05 compared to baseline. The shaded
region surrounding those lines represent the SEM. Lines are horizontally offset for visual clarity. Error bars represent SEM.

Fig. 4. Manual channel exclusion applied to
the full dataset in 94 subjects. Error bars re-
present SEM. Horizontal dashed lines indicate
the t-statistic/AUC measure with no data ex-
clusion. Shaded regions indicate standard error
of the No exclusion baseline conditions. S:
Seizure onset, I: Interictal spiking, L: Lesion.
For all combinations of data exclusion there
was no difference in comparison with the no
exclusion baseline.
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higher than baseline in both modalities, although not significantly. The
opposite effect was observed in the multivariate results, especially in
the bipolar data, in which baseline significantly exceeded AUCs after
HFO removal (Wilcoxon signed-rank test; FDR-corrected q=0.01)

3.4. Comparison of depth vs. other electrodes

For our final analysis, we asked whether data cleaning might be
differentially effective for data collected using different electrode types.
To answer this question we examined the distribution of electrode types
across our subject group and split subjects into those with exclusively
depth electrodes (Depth Only, N=83) and those with some combina-
tion of Grid/Strip/Depth electrodes (N=44). We then conducted the
core univariate analyses separated by referencing scheme (bipolar vs.
common average) and by electrode group and used a 2× 2×2×7
(Group×Channel/Epoch× Std/Kur×Threshold) mixed ANOVA to
determine whether the effect of data cleaning differed for subjects with
different electrode types.

When examining bipolar referenced data, we observed a main effect
of group, with the Grids/Strips/Depths participants showing stronger
subsequent memory effects than the Depths only group [F(1,
123)= 13.5; P=0.0003]. However, as is also evident, the effect of
data cleaning was largely the same across the groups: the ANOVA
showed that neither the Group×Threshold (P=0.12) nor the
Group× Std/Kur (P=0.36) interactions were significant (Fig. 6A).
The interactions of Group×Channel/Epoch [F(1, 123)= 7.4;
P=0.007] and Group×Channel/Epoch×Threshold [F(6,
738)= 2.7; P=0.01] were significant; however these effects were
driven by differences between groups and conditions at very liberal
thresholds (z≤ 1.5) that are unlikely to be used in practice as they
would lead to substantial data loss. In contrast, at thresholds that are
typically used in practice (z≥ 2.0) there did not appear to be any dif-
ferences between the groups in the effect of data cleaning on bipolar
referenced data. To confirm this statistically we conducted the ANOVA
again, restricting our analysis to thresholds z≥ 2.0. Aside from the
expected main effect of Group (P=0.0002) we found no other sig-
nificant main effects or interactions (all P > 0.17). When conducting
the ANOVA on the Common Average referenced data we also found no
significant main effects or interactions (all P > 0.10, Fig. 6B). These
analyses suggest that the effect of data cleaning is largely the same for
data collected exclusively from depth electrodes compared to data
collected from a mixture of grid, strip, and depth electrodes.

4. Discussion

Neuroscientists regularly identify and exclude data through both
automatic and manual means, with the underlying assumption that
doing so will increase the statistical power for detecting physiological
phenomena. In this study, we systematically evaluated the impact of
several preprocessing methods commonly employed in iEEG studies of
human memory with the goal of determining if the approaches are ef-
fective at increasing statistical power at both a univariate and multi-
variate level. The methods we analyzed included bipolar referencing as
well as removing both channels and epochs through automatic statis-
tical thresholding and manual identification. In our cohort of 127
subjects, we also tested the efficacy of preprocessing while varying the
amount of within-patient data, both in terms of the number of elec-
trodes and session length. We found that the preprocessing methods
that involved data (e.g. epoch and channel) exclusion, did not increase
the statistical reliability of the subsequent memory effect. In some
cases, primarily in the multivariate paradigm, the targeted data re-
moval decreased statistical power more than random exclusion did. The
major exception to this general finding was using bipolar referencing.
Finally, when varying the amount of within-patient data through sub-
sampling, we did not find an interaction between the effectiveness of
noise exclusion and the size of the underlying dataset.

Although our results are consistent with the interpretation that
commonly used data cleaning methods do not increase statistical
power, these methods may nonetheless be valuable in situations where
the artifact or noise can be well characterized, and/or is correlated with
the behavior of interest. For example, one could imagine a scenario in
which confounding electromyogram (EMG) or electrooculogram (EOG)
activity from muscle contractions (e.g. due to nervousness or con-
centration, or eyeblinks) could be correlated with memory perfor-
mance. In such a situation, a researcher would certainly want to elim-
inate contamination from such artifacts in order to maximize the purity
of the signal that actually comes from the brain. However, being able to
do this relies on the assumption that a researcher has a good model of
the artifact and has strong evidence that the artifact is correlated with
the behavior or neurophysiological signal of interest. If the artifact is
not strongly related to the behavior, and if the ability to distinguish
artifact from signal is poor, then removing artifacts is more likely to
remove a mixture of valid and artifactual data, than strictly artifactual
data. This can complicate conclusions drawn from the “cleaned” data
will be representative of the true relationship between physiology and
behavior. In the case of bipolar recordings from intracranially im-
planted electrodes, one would not expect to see significant EMG and

Fig. 5. Manual epoch exclusion applied to depth electrodes in 28 subjects. Hatched bars represent outcome metrics after HFO epochs were excluded, and solid bars
represent baseline. * Denotes significant difference from the No exclusion baseline (Wilcoxon signed-rank test; FDR-corrected q=0.01).
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EOG artifacts. In situations in which the characteristics of the artifact
are known (e.g. 50/60 Hz line noise), data cleaning is advantageous.
However, our results suggest that for cases in which the distinction
between signal and noise is less obvious, the researcher will be better
off collecting and analyzing as much data as possible.

A second reason to reconsider data cleaning is because it offers re-
searchers additional parameters with which to tune analyses. Because
there is no widely accepted approach for intracranial studies of human
memory that researchers can adopt a priori, there is a greater oppor-
tunity for a study to lead to distorted inferences about brain–behavior
relationships that will not generalize. Opportunities to collect data from
iEEG electrodes are usually scarce (Parvizi and Kastner, 2018), making
the recordings themselves highly valuable – ideally researchers would
make use of as much of the collected data as possible. Our results
suggest that investigators should be empowered to analyze as much of
their data as possible, and that a fruitful use of resources would be to
collect large numbers of within-subject observations.

It is interesting that targeted data removal sometimes led to smaller
estimates of the SME, in particular when using a multivariate measure
of the SME, as in Fig. 5. This finding suggests that epilepsy-related HFO
events may correlate with memory processes. If this is the case then
removing such epochs from the data will be likely to remove in-
formative physiological signal along with the HFO artifact, which
would be expected to reduce parameter estimates of the SME. Fig. 5
also suggests that multivariate classifiers can make use of memory-re-
lated information that may be present in these HFO epochs. This would
be consistent with other work in epileptic patients that has shown a
relation between epileptic discharges and episodic memory perfor-
mance (Horak et al., 2017).

Our analyses focused on evaluating the types of data cleaning
methods that have been employed in a restricted domain of intracranial
EEG research, namely episodic memory. These data cleaning techniques

have often been used in conjunction with time-frequency analyses in
which voltage timeseries are transformed in order to extract time-
varying spectral content. Our results are therefore likely to generalize
most readily to other intracranial EEG work in domains that also adopt
a spectral decomposition approach (Lachaux et al., 2012; Miller et al.,
2007a; Voytek et al., 2010). There is also widespread evidence that
changes in high-frequency power correlate with cognition (Crone et al.,
2006; Cheyne et al., 2008; Miller et al., 2007b; Hermes et al., 2015;
Chang et al., 2011), suggesting applications of this work to other do-
mains outside of episodic memory. On the other hand, we believe our
data are also important more broadly for researchers employing other
methods that emphasize time-domain data representations (Phan et al.,
2019). While the efficacy of particular data cleaning methods will de-
pend on the chosen analysis approach, our data question the broader
assumption that reducing the sample size of a dataset by excluding
putatively noisy observations leads to increased statistical power.

The analyses presented here focused on applying noise identifica-
tion and removal to time-locked data epochs in the context of a free
recall episodic memory task. This experimental setup had the benefit of
controlling the cognitive environment across observations within and
between participants, however one could also interpret this as a noise
removal step in its own right. Our assessment of how noise removal
affected statistical power is based on spectral decomposition of the
electrophysiological data, and there is ample evidence that engaging in
cognitive tasks induces broadband changes in the frequency spectrum
of the EEG signal (Gao et al., 2017; Podvalny et al., 2015; He et al.,
2010; He, 2014). In many situations, however, researchers are inter-
ested in applying noise removal methods to continuous recordings
during non-task periods in which the participant's cognitive environ-
ment is likely to be much more unconstrained. One important avenue
for future work would be to investigate the extent to which our findings
generalize to continuous recordings that include (or are entirely made

Fig. 6. Comparison of the effects of data cleaning on the univariate subsequent memory effect, as a function of the type of electrode (Depths Only vs. Grid/strip/
depth) and referencing approach. (A) bipolar referenced data. (B) common average referenced data.
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up of) non-task periods.
Our data contribute to a growing literature on optimal methods for

referencing electrophysiological data. For applications where the fea-
tures of interest are power at a priori defined frequencies of interest,
future work could evaluate the efficacy of methods for separating the
raw data into signal and noise components using eigenvalue decom-
position (Nikulin et al., 2011), instead of bipolar referencing followed
by wavelet convolution. Other data-driven approaches such as in-
dependent component analysis (ICA) have also been shown to outper-
form bipolar referencing in simulations involving relatively small
numbers of channels (Michelmann et al., 2018), suggesting an exten-
sion of our work that would compare bipolar and ICA-based referencing
on a large dataset collected from human participants. Other transfor-
mations such as the Laplacian (Li et al., 2018) may help eliminate
confounding effects of white matter electrodes in other referencing
schemes (Mercier et al., 2017), thereby outperforming a standard bi-
polar montage. Although a comparison between the bipolar approach
and these other methods is beyond the scope of this report, future work
should focus on comparing these different approaches.

Generally, whether it be through targeted preprocessing, random
exclusion, or subsampling, removing epochs tended to have a larger
impact on statistical power than removing electrodes, and this differ-
ence was more pronounced in the univariate analysis. The reported t-
stat was the average of tests across individual electrodes, so removing
electrodes did not change the statistical power of the tests, which is
determined by the number of epochs. Surprisingly, although removing
“noisy” data failed to improve statistical power, bipolar referencing
increased statistical power. Although the improvement was modest, it
was statistically significant in the multivariate analyses. This effect
could be due to the utility of bipolar referencing in minimizing pro-
pagation of artifacts on reference channels. This also suggests that local
as compared with global spectral changes better characterize variability
in memory encoding, at least at high frequencies (Solomon et al., 2017).

Another way to view our results would be that the classifiers, par-
ticularly the multivariate logistic regression, were robust to the noise
that data exclusion targeted (Tomioka et al., 2007). This is consistent
with previous work showing that L2-penalized logistic regression clas-
sifiers generalized to situations in which electrodes were excluded
(Hammon and de Sa, 2007). Logistic regression also proved to be reli-
able in single-trial EEG classification (Tomioka et al., 2007) and cursor
movement (Penny et al., 2000) for a BCI. Similar robustness has also
been observed for classifiers in other domains (Ryali et al., 2010;
Bootkrajang and Kabán, 2012; Carroll and Pederson, 1993; Komarek
and Moore, 2003).

5. Conclusion

This study tested the impact of various preprocessing methods on
multivariate and univariate iEEG measures of episodic memory en-
coding. Across all tests that involved removing data based on automatic
statistical thresholding or manual identification, exclusion did not im-
proved classifier performance. Bipolar referencing, however, improved
classifier metrics, particularly in the multivariate paradigm. These re-
sults were consistent across varying amounts of within-patient data.
The study suggests that many commonly used approaches for removing
iEEG noise are likely to be less effective in increasing statistical power
than either bipolar referencing or increasing the number of within-
participant observations.
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