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ABSTRACT
Diffusion MRI is the dominant non-invasive imaging method used to characterize white

matter organization in health and disease. Increasingly, fiber-specific properties within a voxel

are analyzed using fixels. While tools for conducting statistical analyses of fixel data exist,

currently available tools are memory intensive, difficult to scale to large datasets, and support

only a limited number of statistical models. Here we introduce ModelArray, a memory-efficient

R package for mass-univariate statistical analysis of fixel data. With only several lines of code,

even large fixel datasets can be analyzed using a standard personal computer. At present,

ModelArray supports linear models as well as generalized additive models (GAMs), which are

particularly useful for studying nonlinear effects in lifespan data. Detailed memory profiling

revealed that ModelArray required only limited memory even for large datasets. As an example,

we applied ModelArray to fixel data derived from diffusion images acquired as part of the

Philadelphia Neurodevelopmental Cohort (n=938). ModelArray required far less memory than

existing tools and revealed anticipated nonlinear developmental effects in white matter. Moving

forward, ModelArray is supported by an open-source software development model that can

incorporate additional statistical models and other imaging data types. Taken together,

ModelArray provides an efficient and flexible platform for statistical analysis of fixel data.

KEYWORDS: Fixel-based analysis, statistical analysis, software, development, big data, MRI

HIGHLIGHTS

● ModelArray is an R package for mass-univariate statistical analysis of fixel data

● ModelArray is memory-efficient even for large-scale datasets

● ModelArray supports linear and nonlinear modeling and is extensible to more models

● ModelArray facilitates easy statistical analysis of large-scale fixel data
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INTRODUCTION

Diffusion MRI (dMRI) is the dominant method used to non-invasively study white matter

organization in the human brain. The most commonly used method for modeling the diffusion

signal is diffusion tensor imaging (DTI; Basser & Pierpaoli, 1996). However, DTI cannot

effectively model two or more crossing fibers within a given voxel; crossing fibers are thought to

comprise up to ~90% of white matter (WM) voxels (Jeurissen et al., 2013; Schilling et al., 2018;

Yeh et al., 2013). One method for addressing crossing fibers that is increasingly ascendant is

fixel-based analysis (FBA; Raffelt et al., 2015, 2017). A fixel refers to a specific fiber population

in a voxel; with FBA, multiple distinct fiber populations can be estimated within a voxel and

multiple fiber-specific properties can be quantified (Raffelt et al., 2015, 2017). The FBA pipeline

typically includes two parts. First, fixel data is generated for each participant in a sample and

quantified according to standard measures like fiber density (FD), fiber-bundle cross-section

(FC), or their combination – fiber density and cross-section (FDC). Second, the

high-dimensional fixel data from a sample is often analyzed in template space using

mass-univariate hypothesis testing; this often relies upon connectivity-based fixel enhancement

(CFE) as implemented in MRtrix (https://www.mrtrix.org/; Tournier et al., 2019).

However, current tools have two limitations. First, CFE has high memory demands,

which may scale by image resolution and sample size (Raffelt et al., 2015). This impedes the

application of FBA in large-scale dMRI data resources that include thousands of participants;

e.g., the Philadelphia Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014), the Human

Connectome Project (HCP; Van Essen et al., 2013), or the Healthy Brain Network (HBN;

Alexander et al., 2017). When faced with such large data resources, investigators often opt to
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reduce the dimensionality of the data and use regional summary measures, even if it is not

scientifically optimal.

Second, the statistical models supported by MRtrix for FBA are currently limited to the

general linear model (GLM). This may not be optimal for lifespan studies where effects of

interest are often nonlinear (e.g., Bethlehem et al., 2022; Lebel et al., 2012). Ideally, a statistical

analysis toolset should be extensible to incorporate diverse statistical models. R

(https://www.R-project.org; R Core Team, 2021) is a popular open-source statistical

programming software, and it supports a myriad of statistical functionality. Generalized additive

models (GAMs; Wood, 2001, 2004) are among the most widely used approaches to model

nonlinear effects of interest in R. GAMs can rigorously model both linear and nonlinear effects

by applying a penalty that helps avoid over-fitting; this approach is particularly valuable in

high-dimensional data settings – cases when hundreds of thousands of fixels are present – where

it is difficult to conduct detailed model diagnostics.

To address these limitations, we introduce ModelArray

(https://pennlinc.github.io/ModelArray/), a memory-efficient R package for statistical analysis of

fixel data. To maximize memory efficiency, ModelArray does not load the entire fixel data into

the memory. Instead, it only reads a limited block of data when needed by leveraging the

Hierarchical Data Format 5 (HDF5) file format and DelayedArray package in R (Pagès et al.,

2021), At present, ModelArray supports linear models and GAMs, but it is by design extensible

and can incorporate many statistical models implemented in R. To demonstrate ModelArray’s

scalability, functionality, and extensibility, we profiled its memory usage and applied it to

examine nonlinear patterns of brain development using fixel data from the PNC (n = 938). As
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described below, ModelArray allows for efficient and flexible analysis of fixel data in large scale

data resources.

MATERIALS AND METHODS

Overview

ModelArray is an R package for mass-univariate hypothesis testing of fixel data that is

designed to be scalable for large datasets. We chose R as the platform as it is among the most

widely used platforms for statistical computing. This feature facilitates the potential to easily

incorporate diverse statistical models. ModelArray takes the fixel-wise data as input, after it has

been converted to the HDF5 format by its companion software ConFixel

(https://github.com/PennLINC/ConFixel). Fixel-wise data with metrics such as FD, FC, and FDC

can be calculated in existing software such as MRtrix (Tournier et al., 2019). ModelArray

performs statistical analysis for each fixel based on the statistical formula a user provides, and

finally saves statistical output as images via ConFixel. These output images can then be viewed

in widely-used visualization tools such as MRView from MRtrix (https://www.mrtrix.org/;

Tournier et al., 2019).

Software design and memory efficiency

We capitalized upon the R package DelayedArray (Pagès et al., 2021) to maximize

memory efficiency. Of note, the term “memory” is used in this paper to refer to the computer’s

memory (RAM) used by software (including data loaded into the memory), and “disk” or “disk

space” refers to the hard disk space where the files (e.g., an HDF5 file) are stored. ModelArray

wraps fixel data on disk into a DelayedArray object, allowing common array operations such as
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indexing (e.g., extracting values of a specific fixel from a matrix) or transposing to be performed

without loading the on-disk object into memory. DelayedArray objects store their component

data in an HDF5 file, and operations on a DelayedArray object are executed in a

memory-efficient, “delayed” way (where most R operations are processed on-demand and en

masse). The result is a memory-efficient and easy-to-use R interface for a large and hierarchical

on-disk dataset. After being generated by ConFixel (see below), an HDF5 file of fixel data

contains a scalar matrix (fixels by participants), basic information of fixels and voxels (e.g.,

lookup tables of the directions of fixels and the coordinates of voxels that contain fixels), and,

once calculated by ModelArray, one or more result matrices (fixels by statistical metrics).

Leveraging DelayedArray, HDF5 format, and the supporting R package HDF5Array (Pagès,

2021), the on-disk fixel data can be accessed and manipulated while minimizing memory

requirements.

ModelArray workflow

ModelArray is packaged with the companion software ConFixel for converting fixel data

to the expected file format (see Figure 1). Specifically, ConFixel is a Python-based

command-line interface software, and it converts between the original MRtrix image format

(.mif) and the HDF5 file format (.h5) used for ModelArray. After the file format conversion,

ModelArray generates a ModelArray-class object for representing the on-disk HDF5 file.

ModelArray uses the S4 Object Oriented Programming (OOP) model which gives users easy

access to the scalar matrix, the source .mif file list, one or more results matrices (if any), and the

file path to the HDF5 file. When fitting models, ModelArray iterates across all fixels in the scalar

matrix but only reads a limited block of data for each current fixel in order to reduce memory

usage. For each fixel, the software fits a model for the participant-level phenotypes of interest –
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such as age, sex, or diagnosis, which are loaded from a separate CSV file provided by the user –

and generates the statistical outputs for each fixel, such as p-values, coefficient estimations, and

t-statistics. After generating the result matrix of fixel-wise statistics, ModelArray will calculate

corrected p-values using the False Discovery Rate (FDR) and export the final result matrix back

into the input HDF5 file. Finally, ConFixel converts the HDF5 file’s results matrix into a list of

.mif files that are readable by widely-used visualization tools such as MRView from MRtrix

(https://www.mrtrix.org/; Tournier et al., 2019).
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Figure 1. Schematic of ModelArray and its companion converter ConFixel. The original fixel
data (.mif files) are first converted into an HDF5 file (.h5) using ConFixel (top of the left box).
ModelArray provides easy access to fixel data in the HDF5 file (“accessor”). When performing
statistical analysis of each fixel (top of the right box), to reduce memory usage, only a limited
block of fixel data is read into the memory. Using the phenotypes of interest (e.g.,: age, sex;
provided by a CSV file), ModelArray fits a statistical model and calculates statistical output for
each fixel. After iterating across fixels, the result matrix is generated (bottom of the right box)
and saved to the original HDF5 file on disk by ModelArray (“write”). Finally, ConFixel converts
the result matrix in this HDF5 file into a list of .mif files ready to be viewed (bottom of the left
box).
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ModelArray functions

ModelArray provides functions for model fitting and writing statistical results. At

present, ModelArray supports linear models (ModelArray.lm()) as well as GAMs with and

without penalized splines (ModelArray.gam()). Model fitting can be accelerated by

requesting more CPU cores for parallel computing. ModelArray writes the rich statistical output

of R into an HDF5 file using the writeResults() function. This HDF5 file is then converted

to a list of .mif files with ConFixel for viewing, as described above. Default statistical output

from ModelArray includes several maps for each model term (e.g., coefficient, t-statistic, raw

and FDR-corrected p-values), as well as maps regarding the overall model fit (e.g., adjusted

R-squared, raw and FDR-corrected p-values from the model F-test in linear models). New

statistical models can be easily added by any GitHub contributor following the same workflow as

existing ones (ModelArray.lm() and ModelArray.gam()); see developer documentation

at: https://pennlinc.github.io/ModelArray/articles/doc_for_developer.html. Thus, ModelArray is

extensible to many diverse statistical methods used in R.

Evaluation data

To evaluate ModelArray, we used the fixel data generated from the Philadelphia

Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014). Here we provide a brief summary

of the data and methods including participant inclusion, image acquisition, image quality

assurance, diffusion MRI preprocessing, and fixel-based analysis. In total, we included n=938

participants (521 female, 417 male) aged 8-23 years old. Participants were excluded due to lack

of diffusion imaging data, abnormalities in brain structure, major health conditions, missing B0

field map, poor image quality, etc. All the dMRI data underwent a rigorous manual and

automated quality assessment as previously described (Roalf et al., 2016).
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MRI scans were acquired on a Siemens TIM Trio 3T scanner. Diffusion MRI scans were

acquired with a twice-refocused spin-echo (TRSE) single-shot echo-planar imaging (EPI)

sequence. The sequence included 64 diffusion-weighted images of b = 1000 s/mm2 as well as 7

interspersed b = 0 images; these images were acquired over two scan runs. The in-plane

resolution was 1.875×1.875 mm2, slice thickness was 2 mm without gap. In addition, a B0 field

map was also acquired for distortion correction of dMRI data. In-scanner motion during the

dMRI scan was quantified as the root mean squared displacement (mean relative RMS); this was

calculated from 7 b = 0 volumes interspersed over the course of the dMRI scan (Roalf et al.,

2016). Motion was included as a covariate when modeling age effects using GAMs (described

below). Diffusion images were processed with QSIPrep (https://github.com/PennBBL/qsiprep;

Cieslak et al., 2021). This process included denoising, distortion correction, and head motion

correction. Finally, the images were resampled to AC-PC alignment with 1.25 mm isotropic

voxels.

Following preprocessing, fixel-based analysis was performed using MRtrix

(https://www.mrtrix.org/, version v3.0RC3) (Dhollander et al., 2021; Raffelt et al., 2017;

Tournier et al., 2019). Briefly, study-specific response functions were calculated using data from

30 representative participants across ages (15M/15F). Fiber orientation distributions (FODs) for

all participants were then estimated using single-shell three-tissue constrained spherical

deconvolution (CSD) (Tournier et al., 2007). A study-specific FOD template was generated, and

participants’ FOD images were registered to this study template. After defining fixels, FDC was

quantified and chosen as the metric of interest as it combines both FD and FC and may be more

sensitive than FD or FC alone (Dhollander et al., 2021). Finally, the FDC values were smoothed

with “connected” nearby fixels to increase the signal-to-noise ratio (Raffelt et al., 2015). To
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smooth the data, a whole-brain probabilistic tractogram with 2 million streamlines was generated

from the FOD template, and a fixel-fixel connectivity matrix based on this tractogram was

computed. Lastly, FDC values were smoothed based on this matrix. This procedure yielded fixel

data in template space for each participant, which included 602,229 fixels. This fixel data was

used by both ModelArray and by the function fixelcfestats (Raffelt et al., 2015) in MRtrix

for comparison.

Memory profiling

We evaluated the memory efficiency of ModelArray and compared it to the primary

existing tool for fixel-wise statistical analysis: the function fixelcfestats in MRtrix

(version 3.0.2-193-gdd63cc20) (Raffelt et al., 2015). Memory profiling for both ModelArray and

MRtrix was completed using a Linux system by Working Set Size (WSS) Tools for Linux

(https://www.brendangregg.com/wss.html). We used a virtual machine on a standalone computer

to avoid interference from other users, with memory allocated to the virtual machine = 55

Gigabytes (GB) and total RAM on the computer = 64 GB. Specifically, the resident set size

(RSS) – real memory pages currently mapped – was captured by WSS and recorded. We sampled

the RSS once every second for both parent and any child processes (if more than one CPU core

was used). The total RSS from all processes was calculated by summing the interpolated RSS

values at each second, and the maximum RSS used over time was calculated.

To facilitate comparisons in profiling, we used a simple linear model of FDC = intercept

+ age. To evaluate how memory usage scaled with data size, we examined the full sample

(n=938) as well as subsamples of different sizes (n=30, n=100, n=300, n=500, and n=750).

Furthermore, memory profiling over different parallelization factors was also performed. During

the memory profiling for ModelArray and MRtrix, up to four CPU cores were made available.
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We compared memory requirements using both the full dataset (n=938) and smallest subset of

data (n=30). For MRtrix fixelcfestats, 100 permutations were specified, and F tests were

performed. In all cases, memory profiling was run three times for each use case, and the median

value was reported.

Application using generalized additive models

The memory benchmarking studies were conducted using linear models, as that

functionality is available for both MRtrix and ModelArray. However, in addition, we also

demonstrated the use of GAMs in ModelArray for modeling nonlinear developmental effects.

Notably, existing tools such as MRtrix only support GLMs and do not easily allow users to

model nonlinear developmental effects using GAMs. This application illustrates the extensibility

of ModelArray to incorporate diverse statistical models.

For this application, data from all participants (n = 938) was used. Age was modeled as a

smooth term s(age) with four basis functions (k=4); sex and in-scanner motion (mean relative

RMS displacement) were included as covariates. As in prior work (Pines et al., 2022), the effect

size of the age term was quantified as , where the was the𝑅
𝑎𝑑𝑗, 𝑓𝑢𝑙𝑙
2 − 𝑅

𝑎𝑑𝑗, 𝑟𝑒𝑑𝑢𝑐𝑒𝑑
2 𝑅

𝑎𝑑𝑗, 𝑓𝑢𝑙𝑙
2

adjusted R-squared in the full model, and was that in a reduced model that did not𝑅
𝑎𝑑𝑗, 𝑟𝑒𝑑𝑢𝑐𝑒𝑑
2

include the age term.

Open-source software development and release

ModelArray has been developed on GitHub with version controls and all code is openly

available on GitHub (see Data and code availability statements). Continuous Integration (CI)

testing is used to ensure stability and quality assurance. Specifically, we use CircleCI to perform

unit tests for all major features of ModelArray. These tests ensure the consistency between the
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statistical results calculated in ModelArray fitting loop and those calculated in standard R. Once

updated code is committed to GitHub, CircleCI automatically builds the software and runs unit

tests. If there are any errors, CircleCI will alert the developers to this failure immediately,

assuring that updates do not alter software performance.

Data and code availability statements

ModelArray documentation can be found at https://pennlinc.github.io/ModelArray. All

code used to perform memory profiling and application of GAMs is available at

https://github.com/PennLINC/ModelArray_paper. The source code for ModelArray is available

at https://github.com/PennLINC/ModelArray, and the source code for ConFixel is available at

https://github.com/PennLINC/ConFixel. The version of ModelArray used for benchmarking and

demonstration was commit SHA-1 0911c4f. The PNC dataset used in this paper is available on

dbGAP

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2). As

part of the software tutorial, example fixel data from 100 PNC participants is openly shared on

OSF (https://doi.org/10.17605/OSF.IO/JVEHY).

Ethics statement

No new data were collected specifically for this paper. The Philadelphia

Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014) was approved by IRBs of the

University of Pennsylvania and Children's Hospital of Philadelphia. All adult participants in the

PNC provided informed consent to participate; minors provided assent alongside the informed

consent of their parents or guardian.
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RESULTS

Software walkthrough

Before using ModelArray, two files need to be prepared by the user: an HDF5 (.h5) file

of fixel data (example filename here: example.h5), and a CSV file of participant’s phenotypes

of interest (e.g., age, sex, etc; example filename here: example.csv). The HDF5 file can be

obtained by applying ConFixel to convert the original fixel data (.mif files) into required HDF5

file format. An example of the usage of ModelArray is displayed in Figure 2. After loading the

package ModelArray in R (code line #3 in Figure 2), a ModelArray-class object modelarray

was created with the function ModelArray(); it represents the fixel data in the HDF5 (.h5)

file on disk, including the scalar matrix (fixels by participants) (code line #5). As the entire data

was not loaded into memory, this object only required less than 1 Megabytes (MB) for complete

n = 938 evaluation data, much less than the HDF5 file size on the disk (2.1 GB). After the data

frame of phenotypes was loaded into R (code line #6), mass-univariate analyses using linear

models and GAMs were performed with ModelArray.lm() and ModelArray.gam(),

respectively (code line #9-10). The statistical outputs lm.outputs and gam.outputs were

saved back to the original HDF5 file with the function writeResults()(code line #13-14).

These outputs saved in the HDF5 file can be converted back to .mif files by ConFixel for

viewing.
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Figure 2. Example R code for executing analysis using ModelArray. ModelArray functions are
highlighted in green.

For further details, as part of the comprehensive online documentation, please see the

“Walkthrough” of ModelArray and ConFixel

(https://pennlinc.github.io/ModelArray/articles/walkthrough.html). This walkthrough can be

used in conjunction with openly-shared fixel data from 100 PNC participants, which is available

on OSF (https://doi.org/10.17605/OSF.IO/JVEHY).

ModelArray is memory-efficient and robust to dataset size

We profiled the memory usage of ModelArray and fixelcfestats from MRtrix over

a range of input data sizes (e.g., number of participants) and parallelization settings. As a first

step, we evaluated both the full dataset (n=938) as well as five smaller sub-samples. This initial

evaluation was completed using four CPU cores. As the number of participants analyzed

increased, ModelArray memory usage only changed minimally (Figure 3A). In comparison,

MRtrix’s memory requirements scaled with the number of participants included, ultimately

requiring 47.79 GB of memory when 938 participants were analyzed (Figure 3B).
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Figure 3. Memory required by ModelArray does not vary by sample size. The maximal memory
required by a linear model executed using ModelArray.lm() was evaluated when analyzing
a range of sample sizes (A) and compared with MRtrix (B). All models were performed with a
parallelization factor of 4.

Next, we examined how parallelization options impacted memory use. As expected,

when ModelArray requested more CPUs for analysis of samples of either small (n=30, Figure

4A) or large number of participants (n=938, Figure 4B), the memory required scaled by the

parallelization factor. However, regardless of the parallelization configuration, ModelArray
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consumed substantially less memory than MRtrix (Figure 4C & D), especially when analyzing a

large number of participants.

Figure 4. ModelArray is memory-efficient even under different parallelization configurations.
Maximal memory usage for a linear model run using ModelArray.lm() was evaluated across
a sample of n=30 (A) and n=938 (B) with varying numbers of CPU cores requested (top panels).
ModelArray.lm() consumed substantially less memory than a comparable analysis using
MRtrix in both sample sizes (C, D).
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ModelArray captures nonlinear developmental effects

As a final illustration of ModelArray’s functionality and extensibility to diverse statistical

models, we also examined nonlinear developmental effects in the PNC using GAMs. Robust

nonlinear age effects can be observed in white matter tracts including the corpus callosum (CC)

and tracts in the brainstem even at very high statistical thresholds (p-value of s(age) < 1×10-15,

Figure 5). To visualize the nonlinear age effects, a cluster in CC was defined with above

statistical threshold, and a GAM was fit for FDC averaged in an example 2D slice of this cluster

(highlighted in Figure 5A by a white arrow). The averaged FDC of these fixels increased

throughout childhood and adolescence but then plateaued in young adulthood (Figure 5B). The

effect size (change in adjusted R2) of age in this fitted GAM was 0.204.

Figure 5. ModelArray allows memory-efficient estimation of nonlinear effects. Fixel-wise GAM
fitted with ModelArray.gam() revealed nonlinear FDC changes with age in childhood and
adolescence (n = 938). The GAM also included sex and motion quantification as covariates. (A)
Fixels whose FDC was significantly associated with age (p-value of s(age) < 1×10-15); fixels are
colored by effect size of s(age). Background image is the FOD template. (B) GAM fit for FDC
averaged in the 2D slice of the cluster in CC highlighted in panel A by a white arrow.
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DISCUSSION

Despite the advantages of representing diffusion imaging data as fixels, FBA is a

relatively new framework compared to voxel-based analysis, and relatively few analytic tools are

currently available for statistical analysis of fixel data. ModelArray is an R package for

mass-univariate statistical analysis of fixel data. As discussed below, ModelArray allows for both

linear and nonlinear modeling of fixel data in large datasets while only requiring modest amounts

of memory.

Scalability to large-scale data resources

Large-scale neuroimaging datasets enhance statistical power and the reliability of

findings in studies of individual differences (Marek et al., 2022). However, as data size grows,

memory requirements often become quite large when performing group-level statistical analysis.

As our benchmarking studies demonstrate, an existing tool for fixel-wise statistical analysis of

fixel data (MRtrix) scales with sample size, which can be problematic for with limited

computational resources. To address this challenge, we designed ModelArray to minimize

memory requirements by only reading data into memory as needed. Our benchmarking studies

illustrated that ModelArray memory requirements were low even when analyzing hundreds of

participants, and only had minimal change when the number of participants increased. This

scalability facilitates fixel-wise statistical analyses of large-scale data resources.

Extensibility to diverse statistical models

Brain changes across the lifespan are often nonlinear. One of the most-widely used

statistical models to capture both linear and nonlinear effects is the GAM. GAMs use smooth

functions to flexibly model linear and nonlinear effects; these smooth functions can be penalized

to avoid over-fitting. The incorporation of GAMs in ModelArray represents an advance over
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existing tools, which at present only support the GLM. However, it should be noted that because

ModelArray is built within R, it has the potential to leverage the myriad of statistical models that

R provides. Indeed, additional statistical models can be added to ModelArray using the same

workflow described in the developer documentation

(https://pennlinc.github.io/ModelArray/articles/doc_for_developer.html). This extensibility will

allow for ongoing enhancements – by both the original developers and the broader community –

to extend ModelArray’s functionality to a wide variety of statistical models.

Limitations and future directions

Several limitations of ModelArray should be noted. First, ModelArray is configured to

only analyze fixel data. Moving forward, it may be generalized to allow for analyses of other

imaging data types such as voxel (NIfTI) and surface (CIFTI) data. Such extensions could

leverage ModelArray’s modular I/O interface, which would only require additional companion

converters (i.e., ConVoxel instead of ConFixel). Second, ModelArray does not incorporate

information of fixel-fixel connectivity (in contrast to CFE with MRtrix), which limits the ability

of ModelArray to conduct cluster-wise statistical inference. However, the control of multiple

comparisons using methods such as FDR is commonly used in large-scale studies and is

currently implemented in ModelArray. Third and finally, ModelArray requires installation in R

and depends on other R packages.

Conclusion

ModelArray is a scalable R package for fixel-wise statistical analysis. It reduces memory

requirements and offers both linear and nonlinear modeling with substantial extensibility. Taken

together, ModelArray facilitates the statistical analysis of fixel data in large-scale dMRI datasets.
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